Chemical Safety Science, 2018, Volume 2, No 2, p. 45 — 56

 

Nanoscale objects and nanomaterials

 

UDC 544.023.5 + 539.232                                                             Download PDF (RUS)

DOI: 10.25514/CHS.2018.2.14100

 

PROBE MICROSCOPY OF PLATINUM AND ORGANOBORON NANOPARTICLE-BASED COATINGS DEPOSITED ON THE SURFACE OF HIGHLY ORIENTED PYROLYTIC GRAPHITE

 V. A. Kharitonov*, S. Yu. Sarvadii, and M. V. Grishin

Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia

Received November 07, 2018

Published December 26, 2018

Abstract – The coatings based on organoboron and platinum nanoparticles deposited on the surface of highly oriented pyrolytic graphite are of special interest as model catalytic systems. In this work, the methods of scanning tunneling microscopy and atomic force microscopy are applied for determining morphology of three kinds of coatings, i.e. based on organoboron or platinum nanoparticles, or a combination thereof, deposited on the surface of the indicated substrate. The lateral and normal dimensions of the coating elements as well as their mutual arrangement are established, the structure and properties of the coatings studied are compared.

Keywords: scanning tunneling microscopy and spectroscopy, atomic force microscopy, carboranes, platinum, nanostructure, coatings, highly oriented pyrolytic graphite.


 

References:

1. Gatin A.K., Grishin M.V., Slutskii V.G. et al. // Russian J. Phys. Chem. B. 2014. V. 8. No. 3. P. 416. doi: 10.1134/S1990793114030208.
2. Grishin M.V., Gatin A.K., Slutskii V.G. et al. // Russian J. Phys. Chem. B. 2015. V. 9. No. 4. P. 596. doi: 10.1134/S1990793115040065.
3. Grishin M.V., Gatin A.K., Slutskii V.G. et al. // Russian J. Phys. Chem. B. 2016. V. 10. No. 3. P. 538. doi: 10.1134/S1990793116030192.
4. Choudhary T.V., Sivadinarayana C., Goodman D.W. // Catal. Lett. 2001. V. 72. P. 197.
5. Smil V. Enriching the Earth: Fritz Haber, Carl Bosch and the Transformation of World Food Production. Cambridge MA: MIT Press, 2001. P. 69.
6. Thomas G., Parks G. Potential Roles of Ammonia in a Hydrogen Economy. Washington DC: U.S. Department of Energy, 2006. P. 7.
7. Grishin M.V., Gatin A.K., Slutskii V.G. et al. // Russian J. Phys. Chem. B. 2016. V. 10. No. 5. P. 760. doi: 10.1134/S1990793116050201.
8. Sun Y.‐M., Sloan D., Ihm H., White J.M. // J. Vacuum Sci. Technol. A. 1996. V. 14 P. 1516. doi.org/10.1116/1.580288
9. Gatin A.K., Grishin M.V., Sarvadii S.Yu. et al. // Kinetics and Catalysis. 2018. V. 59. No. 2. P. 196. doi: 10.1134/S0023158418020088.
10. Hansgen D.A., Vlachos D.G., Chen J.G. // Nat. Chem. 2011. V. 2. P. 484. doi: 10.1038/nchem.626.
11. Hansgen D.A., Thomanek L.M., Chen J.G., Vlachos D.G. // J. Chem. Phys. 2011. V. 134. P. 184701. doi: 10.1063/1.3589260.
12. Abbott H.I., Aumer A., Lei Y., Asokan et al. // J. Phys. Chem. C. 2010. V. 114. P. 17099. doi: 10.1021/jp1038333.
13. Behafarid F., Cuenya B.R. // Nano Lett. 2011. V. 11. P. 5290. doi: 10.1021/nl2027525.
14. Davies R.J., Bowker M., Davies P.R., Morgan D.J. // Nanoscale. 2013. V. 5. P. 9018. doi: 10.1039/C3NR03047D.
15. Gatin A.K., Grishin M.V., Kirsankin A.A. et al. // Nanotechnologies in Russia. 2013. V. 8. Nos. 1–2. P. 36. doi: 10.1134/S1995078013010059.
16. Grishin M., Gatin A., Kharitonov V., Shub B. // Appl. Phys. Lett. 2011. V. 99. P. 133104. doi: 10.1063/1.3644499.
17. Slutskii V.G., Grishin M.V., Kharitonov V.A. et al. // Russian J. Phys. Chem. B. 2013. V. 7. No. 3. P. 343. doi: 10.1134/S1990793113030123.
18. Gatin A.K., Grishin M.V., Kolchenko N.N. et al. // Russian Chemical Bulletin. 2014. V. 63. No. 8. С. 1815. doi: 10.1007/s11172-014-0671-y.