Chemical Safety Science, 2018, Volume 2, No 2, p. 199 — 211


Technologies, methods and means of protection


UDC 66.074.3; 519.633.2                                                                  Download PDF (RUS)

DOI: 10.25514/CHS.2018.2.14117




 E. I. Akulinin1*, M. Yu. Plotnikov2, D. S. Dvoretsky1, and S. I. Dvoretsky1

1Tambov State Technical University, Tambov, Russia

2OAO Korporatsiya Roskhimzashchita, Tambov, Russia

Received October 09, 2018

Published December 26, 2018

 Abstract – A chemisorption air regeneration reactor design was developed for the reactor operating on the basis of nanocrystalline potassium superoxide fixed on the fibers and pore surface of a fibrous polymer matrix. The reactor was designed for providing favorable atmosphere in a sealed habitable volume within a specified time span calculated considering the presence of 4 people with an available free volume of 6 m3 per person. The resulting calculated load value for the reactor corresponded to the absorption of 100 dm3/h of carbon dioxide and the release of 112 dm3/h of oxygen. A mathematical model simulating the process of chemical air regeneration was used for creating an algorithm for calculating both the guaranteed values of the chemisorption reactor design parameters and the protective effect time. The algorithm allows to calculate the oxygen and carbon dioxide content in the gas-breathing mixture which provides a comfortable level for human breathing in a sealed habitable volume at a given reactor load value, regardless of our partial unawareness (within certain limits) of the input data for computations.

 Keywords: chemical air regeneration, airtight habitable facilities, chemisorption reactor, regenerative product, protective effect time, technological computing procedure.



1. Gladysheva T.V., Gladyshev N.F., Dvoretsky S.I. Nanocrystalline regenerative product. M.: Izd. dom “Spektr”, 2014. 120 p. [in Russian].
2. Gladyshev N.F., Gladysheva T.V., Dvoretsky S.I. et al. Regenerative Products of New Generation: Technology and Instrumentation. M.: Mashinostroenie-1, 2007. 156 p. [in Russian].
3. Pat. 2568578, Russian Federation, 2015.
4. Dvoretsky S.I., Plotnikov M.Yu., Gladyshev N.F., Gladysheva T.V. // Vestnik TGTU [Bulletin of the Tambov State Technical University]. 2014. V. 20. No. 2. P. 292 [in Russian].
5. Dvoretsky D.S., Dvoretsky S.I., Akulinin E.I., Tolstykh S.G // Russian Journal of Physical Chemistry B. 2017. V. 11. No. 4. P. 594.
6. Radoutsky V.Yu. et al. Radiation, Chemical and Biological Protection:. Manual. Belgorod: Izd. BGTU, 2007. 185 p. [in Russian].
7. Gladyshev N.F., Gladysheva T.V., Dvoretsky S.I. Systems and Means of Air Regeneration and Purification in Airtight Habitable Facilities. M.: Izd. dom “Spektr”, 2016. 204 p. [in Russian].
8. Dvoretsky D.S., Akulinin E.I., Tolstykh S.G. et al. // Him. bezop. [Electronic Journal of Chemical Safety]. 2017. V. 1. No. 1. P. 133. doi: 10.25514/CHS.2017.1.11439 [in Russian].
9. Pat. 176066, Russian Federation, 2017.
10. Pat. 166146, Russian Federation, 2016.