Chemical Safety Science, 2018, Volume 2, No 2, p. 23 — 34

 

Nanoscale objects and nanomaterials

UDC 544.7                                                                   Download PDF (RUS)

DOI: 10.25514/CHS.2018.2.14098 

 

 

EFFECT OF SUPPORT ON ADSORPTION PROPERTIES OF GOLD NANOPARTICLES

 М. V. Grishin*, А. К. Gatin, S. Yu. Sarvadii, and B. R. Shub

Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia

Received November 07, 2018

Published December 26, 2018

Abstract — The results of studying adsorption properties of single gold nanoparticles deposited on substrates of different nature (i.e. graphite, silicon, aluminum and titanium oxides) in regard to Н2, О2 and Н2О molecules are presented. Adsorption forms, as well as the values of adhesion coefficients and binding energy for the above reagents have been determined. Substrate nature does not appear to have a significant impact on interaction of hydrogen and oxygen with gold particles. However, gold particles covered with hydrogen adatoms become chemically active. At the same time, the substrate influence on the synthesis of water molecules on the surface of gold nanoparticles is found to be a key factor. The unique properties of coatings based on gold nanoparticles make it possible to use these materials for ensuring chemical safety, i.e. for decontamination of hazardous industrial and consumer wastes, applying them in sensors or diagnostic devices for toxic substances, etc.

Keywords: gold nanoparticles, support, adsorption, adhesion coefficient, binding energy.


 

References:

1. Gleiter H. // Acta Materialia. 2000. V. 48. P. 1. doi: 10.1016/S1359-6454(99)00285-2.
2. Mirkin С.A., Letsinger R.L., Mucic R.C., Storhoff J.J. // Nature. 1996. V. 382. P. 607. doi: 10.1038/382607a0.
3. Taton T.A., Mirkin C.A., Letsinger R.L. // Science. 2000. V. 289. P. 1757.
4. Storhoff J.J., Elghanian R., Mucic R.C. et al. // J. Amer. Chem. Soc. 1998. V.120. P. 1959. doi: 10.1021/ja972332i.
5. Dagani R. // Chem. Eng. News. 1999. V.77. P. 33. doi: 10.1021/cen-v077n006.p033.
6. Hamilton J.F., Baetzold R.C. // Science. 1979. V. 205. P. 1213. doi: 10.1126/science.205.4412.1213.
7. Schmid G. // Chem. Rev. 1992. V. 92. P. 1709. doi: 10.1021/cr00016a002.
8. Cuenya B.R. // Thin Solid Films. 2010. V. 518. P. 3127. doi:10.1016/j.tsf.2010.01.018.
9. Mostafa S., Behafarid F., Croy J.R. et al. // J. Amer. Chem. Soc. 2010. V. 132. P. 15714. doi: 10.1021/ja106679z.
10. Narayana R., El-Sayed M.A. // Nano Letters. 2004. V. 4. P. 1343. doi: 10.1021/nl0495256.
11. Miyazaki A., Balint I., Nakano Y. // J. Nanopart. Res. 2003. V. 5. P. 69. doi:10.1023/A:1024451600613.
12. Manzoli M., Vindigni F., Boccuzzi F. // Catal. Today. 2012. V. 181. P. 62. doi.org/10.1016/j.cattod.2011.07.029.
13. Deng W., Frenkel A.I., Si R., Flytzani-Stephanopoulos M. // J. Phys. Chem. C. 2008. V. 112. P. 12834. doi; 10.1021/jp800075y.
14. Rodriguez J.A., Ma S., Liu P. et al. // Angew. Chem. Intern. Ed. 2007. V. 46. P. 1329. doi: 10.1002/anie.200603931.
15. Aguilar-Guerrero V., Gates B.C. // Catal. Lett. 2009. V. 130. P. 108. doi: 10.1007/s10562-009- 9906-1.
16. Haruta M. // Chem. Rec. 2003. V. 3. P. 75. doi: 10.1002/tcr.10053.
17. Haruta M. // Catal. Surv. Asia. 1997. V. 1. P. 61. doi: 10.1023/A:1019068728295.
18. Ono L.K., Cuenya B.R. // Catal. Lett. 2007. V. 113. P. 86. doi: 10.1007/s10562-007-9027-7.
19. Rostovshchikova T.N., Smirnov V.V., Kozhevin V.M. et al. // Rossijskie nanotekhnogii [Nanotechnologies in Russia]. 2007. V. 2. No. 1–2. P. 47 [in Russian].
20. Gatin A.K., Grishin M.V., Kirsankin A.A. et al. // Nanotechnologies in Russia. 2012. V. 7. No. 3-4. С. 122. doi: 10.1134/S1995078012020085.
21. Kirsankin A.A., Grishin M.V., Kolchenko N.N., Shub B.R. // Khimia v interesah ustojchivogo razvitia [Chemistry for sustainable development]. 2014. V. 22. P. 613 [in Russian].
22. Gatin A.K., Grishin M.V., Kolchenko N.N. et al. // Russian Chemical Bulletin. 2014. V. 63. No. 8. С. 1815. doi: 10.1007/s11172-014-0671-y.
23. Scanning Tunnelling Microscopy I. General principles and applications to clean and absorbatecovered surfaces. / Ed. by H.-J. Guntherodt, R. Wiesendanger. Berlin: Springer-Verlag, 1992. Р. 246.
24. Gatin A.K., Grishin M.V., Sarvadii C.Y., Shub B.R. // Russ. J. Phys. Chem. B. 2019 (in press).
25. Grishin M.V., Gatin A.K., Dokhlikova N.V. et al. // Kinetics and Catalysis. 2015. V. 56. No. 4. P. 532. doi: 10.1134/S0023158415040084.
26. Mironov V.L. Fundamentals of scanning probe microscopy: manual. Nizhnii Novgorod: Institute for Physics of Microstructures, RAS, 2004. P. 114 [in Russian].
27. Automatization and design of matrix KMOP BIS. Ed. by A.V. Fomin. M.: Radio I sviaz’, 1991. P. 256 [in Russian].
28. Physical values. Reference book. Ed. by N.S. Grigorov, E.Z. Meilikhov. M.: Energoatomizdat, 1991. P. 1232 [in Russian].
29. Roderick E. Metal-semiconductor contacts. Oxford: Clarendon Press, 1978. 208 p.
30. Stromsnes H., Jusuf S., Schimmelpfennig B. et al. // J. Mol. Struct. 2001. V. 567-568. P. 137. doi: 10.1016/S0022-2860(01)00542-7.
31. Grishin M.V., Dalidchik F.I., Kovalevskii S.A. et al. // Khimicheskaya Fizika. 2007. V. 26. No. 8. P. 33 [in Russian].
32. Kovalevskii S., Dalidchik F., Grishin M., Kolchenko N., Shub B. // Appl. Phys. A. 1998. V. 66. P. S125.
33. Fahmi A., Minot C. // Surf. Sci. 1994. V. 304. No. 3. P. 343. doi: 10.1016/0039- 6028(94)91345-5.
34. De Pauw E., Marien J. // J. Phys. Chem. 1981. V. 85. No. 24. P. 3550. doi: 10.1021/j15062