Chemical Safety Science, 2018, Volume 2, No 2, p. 212 — 228


Technologies, methods and means of protection


UDC 541.15+533.9                                                                          Download PDF (RUS)                                                                    

DOI: 10.25514/CHS.2018.2.14118




 A. Z. Ponizovsky*, S. G. Gosteev, O. S. Kuzhel’, and A. A. Smirnov

Affiliated Branch of Joint-Stock Company “United Engine Corporation”

“Horizont” Design and Engineering Bureau, Dzerzhinsky, Moscow region, Russia,

Received October 16, 2018

Published December 26, 2018

Abstract – Industrial installations for air purification from environmentally harmful gaseous emissions are described, the principle of action of the installations is based on using low-temperature non-equilibrium gas-discharge plasma. By applying this technology, Design and Engineering Bureau “Horizont” has been serially manufacturing a line of modular industrial units for air cleaning under the trademark “Korona” operating with a capacity in the range of (1–15)·103 m3/hours, in the last 5 years. Physical operation principles of this equipment are given. The design of installations and their technical and economic parameters are considered. The results of purification of exhaust gases from a variety of industrial and municipal enterprises are presented, confirming the effectiveness of this technology for cleaning emissions of sewage pumping stations and large-scale sewage treatment plants from odors and fine mist. Possible ways of optimization of the equipment work and promising trends of its usage are proposed.

Keywords: low temperature plasma, air purification, pulsed high-voltage equipment.


1. Masuda S., Nakao H. // IEEE-IAS Annual Conference. 1986. Denver. P. 1173.
2. Valuev A.A. // Teplofizika vysokykh temperatur [High Temperature]. 1990. V. 28. No. 5. P. 995 [in Russian].
3. Ponizovsky A.Z. // Ekologicheskie systemy i pribory [Ecological systems and devices]. 2007. No. 11. P. 14 [in Russian].
4. Dinelli G., Civitano L., Rea M. // IEEE-IAS Annual Meeting. Pittsburg, 1988.
5. Fridman A.A., Kennedy L.A. Plasma Physics and Engineering. Routledge: Taylor & Francis, 2004. P. 841.
6. Kuwahara T., Yoshida K., Kuroki T. et al. // Plasma Chemistry and Plasma Processing. 2014. V. 34. No. 1. P. 65.
7. Ponizovsky A.Z., Abramov A.A., Goncharov V.A. et al. // Elektrotekhnika [Electrical Engineering]. 1993. No. 3. P. 52 [in Russian].
8. Ponizovsky A.Z., Gosteev S.G. // Yadernaya fizika i inzhiniring [Nuclear physics and engineering]. 2016. V. 7. No. 5. P. 462 [in Russian].
9. Ponizovsky A.Z., Gosteyev S.G., Loktev G.V. et al. // Abstracts 31 All-Russian seminar “Ozone and other environmentally friendly oxidants. Science and technology”. Moscow, June 2-3, 2010. M., 2010. P. 90 [in Russian].
10. Harris G., Ponizovsky A.Z., Shvedchicov A.P. et al. // Inter. Symp. on High Pressure, Low Temperature Plasma Chemistry. Cork, Ireland. August 31 — September 2, 1998. P. 68.
11. Abramov A.A., Aleksandrova T.S., Goncharov V.A. et al. // Proceedings of 2nd seminar “Use of electron beams and pulsed discharges for cleaning exhaust gases”. M., 1993. P. 30 [in Russian].